

Street Traffic Studies, Ltd.

A Maryland DOT Small Business Certified Company
 A Virginia SWaM Certified Company

March 5, 2024 Revised - March 22, 2024

Jody S. Kline Attorney Miller, Miller & Canby 200-B Monroe Street Rockville, MD 20850

RE: 900 Rockville Pike
Danshes Project Plan Amendment
MD 355 Service Drive Access Study

Dear Mr. Kline:

In your December 7, 2023 memorandum, you requested that our office summarize our opinion as it relates to the adequacy of the existing service drive located along the east side of MD 355, to serve the Danshes Property if the existing directional driveway located to the immediate south of the site is not utilized by the Danshes Property. Our office prepared a summary response to your request dated December 19, 2023.

In that letter we detailed the alternatives available to the northern directional access driveway and concluded that the site trips would not have an adverse impact to the other service road driveway connections to MD 355. We made that determination based on several field studies to the site during peak and non peak hours, detailing the existing roadway physical conditions as well as observed traffic operations. We did not conduct any additional traffic counts or specific analyses at that time to support my conclusion.

Since that time, City of Rockville staff has requested that we conduct more detailed review of the service drive operations, including new traffic data, that would then serve as the quantitative basis to support our conclusions.

This letter summarizes the work effort to complete that review.

The existing service drive, located on the east side of MD 355, has 15 driveways along its length. This study focused on the three driveways located at the northern end of the service drive. The primary question of this study focuses on the ability of the second driveway, a full movement access drive to MD 355, to accommodate the peak hour trips generated by the 900 MD 355 retail project.

Jody Kline March 5, 2024 Revised - March 22, 2024 Page Two

New peak period turning movement counts were taken for the three MD 355 / Service Road Driveway intersections and two of the internal service drive intersections on Tuesday, January 29, 2024 between the hours of 7:00 - 9:00 AM, 11:00 AM - 1:00 PM, and 4:00 - 7:00 PM. The counts included all motor vehicles, pedestrians and bicycles. Copies of the turning movement count summaries are attached to this letter, and peak hour volumes are graphically presented on Exhibit 1.

For the purpose of this analysis, we conducted two capacity study reviews. Both studies were developed initially based on existing traffic conditions and then with the added trips associated with the 900 MD 355 retail project.

For consistency purposes, the initial capacity analysis followed the standard City of Rockville procedures using the Critical Lane Volume Technique (CLV). The results of the CLV analysis for both study options clearly demonstrate that the driveway operations meet the City adequacy requirements. Because this procedure is more of a planning tool the latest version of the Highway Capacity Manual (HCM) Two Way Stop Controlled technique was also used to analyze each intersection. The HCM procedure is more of an operational study that include reviews of individual movements and approaches, with detailed results of projected vehicle queues and delay. For each Option, results will be summarized for both the morning and evening peak hour, for existing conditions and total site conditions, using both methods of analysis. The results of the two studies were then compared to detail the net changes due to the addition of the site traffic. The results of the queuing studies are based on 95% queue lengths and are listed based on 95% queue length in feet and number of vehicles.

Jody Kline March 5, 2024 Revised - March 22, 2024 Page Three

The first study, noted as Option 1, reviewed the difference in traffic conditions at the northern driveway, assuming all site traffic utilized it as its sole means of access. The second option, responding to the City request, evaluated the ability of the second driveway to accommodate all of the site generated traffic. Option 2 included a review of the MD 355 / Middle Driveway intersection and the internal service drive intersection.

While there are many other alternatives that could be available for study that include the three driveways counted, including varying percentages of use between the access points, the Options studied represent the worst case conditions of all site trips at one driveway. Any other alternative that spreads the trips over multiple driveways would lower the net impact at the primary drives.

For each of the studies, the site trip were taken directly from the traffic statement as amended.

For consistency purposes, 11th ITE Trip Generation rates were applied for both the previous approval and the new proposed use. In both cases, average trips rates were used for both the morning and evening peak hours.

TABLE 1						
	TRIP GE	NERATIO	ON STUDY			
Development	Morning Peak Hour Evening Peak Hour			Hour		
	In	Out	Total	In	Out	Total
900 Rockville Pike Trips/ 4,400 sf retail	6	4	10	14	15	29
Previous approval (Resolution 14-06) Trips/12,574 Furniture Store	2	1	3	3	4	7
Net New Trips	4	3	7	11	11	22

ITE 11th Edition Trip Generation Manual used for all uses

LU Code 822 - Shopping Center less than 40,000 sf

LU Code 890 - Furniture Store

The average rate was used to calculate the trip generation for all peak hours.

Jody Kline March 5, 2024 Revised - March 22, 2024 Page Four

For the purpose of this analysis, the total trips projected for the 4,400 sf retail building were used to analyze the driveway operations. It is important to emphasize that the projected trips are below the City of Rockville threshold that triggers the preparation of a traffic study even without consideration of the vested trips.

Option 1

This option is presented as a base case condition, assuming all site trips access MD 355 by way of the northern driveway only. The northern driveway is a directional driveway, with access limited to a right turn in, right turn out.

Assignment of the site trips under Option 1 consists of all inbound trips arriving from northbound MD 355 and turning right into the site and all existing volumes turning right from the driveway onto northbound MD 355 as shown on Exhibit 2.

Total traffic conditions as shown on Exhibit 3 reflect adding the site trips to the excising intersection volumes.

The results of the HCM analysis of the existing conditions at the northern directional driveway and the total traffic conditions are summarized in Tables 1A and 1B below.

TABLE 1A CAPACITY ANALYSES Option 1 - MD 355 / North Driveway

Existing Conditions		Total Conditions	
Critical Lane Methodology			
Morning Peak Hour	A(297)	A(757)	
Evening Peak Hour	A(303)	A(777)	

Jody Kline March 5, 2024 Revised - March 22, 2024 Page Five

TABLE 1B CAPACITY ANALYSES Option 1 - MD 355 / North Driveway

Existing Conditions

Total Conditions

Highway Capacity Manual Methodology

Morning Peak hour

WB Right Turn B(12.4 sec. /vehicle) B(12.6 sec./vehicle)

95% Q - 0 feet, 0 vehicles 95% Q - 0 feet, 0 vehicles

Evening Peak Hour

WB Right Turn D(27.6 sec./vehicle) D(30.6 Sec./Vehicle)

95% Q - 10.2 feet, 0.4 vehicles 95% Q - 17.9 feet, 0.7 vehicles

X(x.x sec./vehicle) - Intersection Level of Service (delay per vehicle)

As shown in Tables 1A and 1B, the addition of the trips associated with the subject site are projected to have a limited impact on the operations of the MD 355 intersection. There is no change in level of service, and outbound queue lengths are projected to continue to be less than one vehicle.

From our field investigations, the intersection north driveway operates very well. There were times noted, primarily during the evening peak hour, when mainline MD 355 queue from the MD 355 / Edmonston Road signal queued past the driveway. During those cases, vehicles exiting from the driveway waited for the queue to clear and proceeded safely onto MD 355 under control of the traffic signal.

Option 2

Option 2 represents a study of the middle driveway, assuming that the 900 MD 355 traffic uses it as its sole means of access. The north directional driveway is not available for its use.

Trip assignments for the morning and evening peak hour trips are shown on Exhibit 4. Trip assignments used the existing driveway distributions as the primary basis as they reflect the actual driveway use. Specifically, the outbound driveway volume during the evening peak predominantly turns right, with a very limited number turning left, typically at a 10:1 ratio. This split is a direct function of the mainline MD 355 peak hour volumes and was found to be consistent with the southern driveway volumes also, as well as observations of the remaining driveways to the south, with the exception of the signal controlled driveways.

Jody Kline March 5, 2024 Revised - March 22, 2024 Page Six

Adding the site trips as shown in Exhibit 4 to the existing traffic volumes in Exhibit 1, results in the total peak hour trips for Option 2, shown on Exhibit 5.

The total traffic volumes were analyzed using the same methodologies as Option 1, the City standard CLV and the Highway Capacity Manual 2 way stop controlled analysis. The results of those studies are shown in Table 2.

The westbound approach of the service drive access to MD 355 is 30 feet wide. The approach is unmarked. The outbound approach as evidenced by the traffic data and supported by a number of field observations, typically operates as an outbound right turn lane. In the limited times that a vehicle is turn left onto MD 355, the approach was observed operating both as a single combined left / right turn lane and as separate left and right turn lanes. As noted in the peak hour summaries, there were no outbound lefts recorded during the morning peak and only 3 during the evening peak (averaging one every 20 minutes).

For the purposes of our analysis, the Critical Lane Analysis was prepared assuming the side street approaches operated with a single shared lane. Two separate HCM studies were prepared for Option 2, the first assuming two outbound lanes for the side street approach, summarized in Table 2B, and then assuming a single outbound lane for the side street approach, with the results summarized in Table B3.

TABLE 2A CAPACITY ANALYSES Option 2 - MD 355 / Middle Driveway

	Existing Conditions	Total Conditions
Critical Lane Methodology		
Morning Peak Hour	A(644)	A(668)
Evening Peak Hour	A(739)	A(765)

Jody Kline March 5, 2024 Revised - March 22, 2024 Page Seven

TABLE 2B CAPACITY ANALYSES Option 2 - MD 355 / Middle Driveway

Highway Capacity Manual

(Two outbound lanes)

Morning Peak hour	Existing Conditions	Total Conditions
WB Approach	(0 left turns)	B (12.4 sec./veh)
WB Right Turn	B(10.9 sec./ veh) 95% Q - 2.6 feet, 0.1 veh	B(10.9 sec./veh) 95% Q - 0 feet, 0 veh
WB Left Turn	N/A (0 left turns)	C(18.3 sec./veh) 95% Q - 0 feet, 0 veh
SB Approach	A(0.1 sec/veh)	A(0.1 sec/veh)
SB Left	B(10.8 sec/veh) 95% Q - 2.6 feet, 0.1 veh	B(10.8 sec/veh) 95% Q - 2.6 feet, 0.1 Veh
Evening Peak Hour	Existing Conditions	Total Conditions
WB Approach	D (31.2 sec/Veh)	D (34.6 sec./veh)
WB Right Turn	D(25.5 sec. /veh) 95% Q - 17.9 feet, 0.7 veh	D(27.3 sec./veh) 95% Q -25.6 feet, 1.0 veh
WB Left Turn	F(101.2 sec/veh) 95% Q - 5.1 feet, 0.2 veh	F(107.2 sec./veh) 95%Q - 10.2 feet, 0.4 veh
SB Approach	A (0.6 sec/ veh)	A (0.9 sec / veh)
SB Left	E(38.7 sec/veh) 95% Q - 17.9 feet, 0.7 veh	E(42.6 sec/veh) 95% Q - 28.2 feet, 1.1 Veh

X(x.x sec./veh) - Level of Service (delay per vehicle)

Jody Kline March 5, 2024 Revised - March 22, 2024 Page Eight

TABLE 2C CAPACITY ANALYSES Option 2 - MD 355 / Middle Driveway

Highway Capacity Manual

(One outbound lane)

Morning Peak hour	Existing Conditions	Total Conditions
WB Approach	B (10.9 sec./veh) 95% Q - 0 feet, 0.1 veh	B (12.5 sec./veh) 95% Q - 0 feet, 0 veh
SB Approach	A(0.1 sec/veh)	A(0.1 sec/veh)
SB Left	B(10.8 sec/veh) 95% Q - 2.6 feet, 0.1 veh	B(10.8 sec/veh) 95% Q - 2.6 fect, 0.1 Veh
Evening Peak Hour	Existing Conditions	Total Conditions
WB Approach	D (34.9 sec/veh) 95% Q - 25.6 feet, 1.0 veh	E (46.2 sec./veh) 95% Q -43.5 feet, 1.7 veh
SB Approach	A (0.6 sec/ veh)	A (0.9 sec / veh)
SB Left	E(38.7 sec/veh) 95% Q - 17.9 feet, 0.7 veh	E(42.6 sec/veh) 95% Q - 28.2 feet, 1.1 Veh

X(x.x sec./veh) - Level of Service (delay per vehicle)

As shown in Table 2A, the added impact of 10 morning peak hour trips and 29 evening peak hour trips to the middle driveway intersection results in very minor changes in the intersection capacity results based on the CLV analysis. The intersection is projected to continue operating at Level of Service 1 during both peak hours with the addition of the 90 MD 35 site trips added. Intersection approach levels of service remain unchanged, vehicle queues are consistently 1 vehicle or less.

Operationally, as shown on tales 2B and 2C, the addition of the 900 MD 355 trips is projected to have a minor impact as well. Generally the results in Table 2B would reflect operations of the intersection. In the limited case where an outbound vehicle turingin left blocked the right turns, the results as shown in Table 2c would be applicable.

Jody Kline March 5, 2024 Revised - March 22, 2024 Page Nine

In addition to the MD 355 / Middle Driveway intersection study, a review was also conducted of the service drive intersection with the middle driveway. In this case, due to the extremely low morning volumes, only the evening peak hour was studied. While not signed as one, the intersection operates primarily as an all way stop, so the HCM All WAY stop technique was used to review the intersection capacity. The results of those studies are summarized in Table 3 below and the work sheets are attached.

TABLE 3 CAPACITY ANALYSES Option 2 - Service Road / Middle Driveway

Evening Peak Hour	Existing Conditions	Total Conditions
Intersection	A(7.1 Sec/veh)	A(7.2 sec/veh)
EB Approach	A (6.7 sec/Veh)	A (7.0 sec./veh)
NB Approach	A(7.4 sec. /veh)	A(7.5 sec./veh)
SB Approach	A (6.8 sec./veh)	A(6.8 sec./veh)

As shown in Table 3 above, all approaches of the studied intersection are projected to operate at Level of Service A during the evening peak hour under existing and total traffic conditions.

Jody Kline March 5, 2024 Revised - March 22, 2024 Page Ten

In summary, the results of the additional operational studies confirm that the addition of the trips associated with the proposed 900 MD 355 retail building will not have an adverse impact on the operation of the service road or the middle service road driveway intersection with MD 355, assuming the northern driveway is not available. The results clearly demonstrate that the two service drive intersections with MD 355 are projected to operate well within the range of acceptable standards bases on the City criteria and that the additive affect of the 900 MD 355 trip is extremely minor.

The quantitative findings of this review are consistent with the initial field observation conclusions summarized in our December 19, 2023 letter.

If you have any questions or need additional information, please let me know.

Sincerely,

David A. Nelson

David A. Nelson, P.E., P.T.O.E. President

Project: 900 Rockville Pike Intersection: MD 355 @ Middle Service Drive

Scenario: Existing

Time Period: Morning Peak

	1	MD 355	
Rockville CLV Standard:	1424	13 1751 11 VPH <u>Signal Phasing</u> 0 3 1 # Lanes N-S Split Phase?	no yes
VPH Left 2 Thru 0 Right 8 R	# Lanes 0 1 0	Intersection LOS: B or better ← 1 0 T	R MiddleAccess Chru eft
Analyst: STS Organization: STS Date of Analysis:0		# Lanes 0 3 0 CLV (EB) VPH 0 510 2 Left Thru Right R CLV (NB) CLV (NB) CLV (NB) CLV (SB) CLV (N-S) CLV (E-W)	10 1 200 653 653 11

Project: 900 Rockville Pike Intersection: MD 355 @ Middle Service Drive

Scenario: Existing
Time Period: Evening Peak

	MD 355	1
Brandywine CLV Standard: 1424	R Right Thru Left 30 1464 24 VPH 0 3 1 #Lanes	Signal Phasing N-S Split Phase? no E-W Split Phase? yes
VPH #Lanes Left 2 0 — Thru 0 1 → Right 12 0 — R	Intersection CLV: 739 CLV Standard: 1424 Intersection LOS: B or better Better Than CLV Standard	# Lanes VPH R University # Lanes VPH R # Lanes VPH R Drive O 37 Right Drive O 3 Left Drive O 3 Left
Analyst: STS Organization: STS Date of Analysis:03/24	↑ Î r # Lanes 0 3 0 VPH 1 1783 2 Left Thru Right R	CLV (EB) 14 CLV (WB) 40 CLV (NB) 685 CLV (SB) 554 CLV (N-S) 685

Project: 900 Rockville Pike Intersection: MD 355 @ Middle Service Drive Scenario: Existing plus Site Time Period: Morning Peak

	MD 355	
Brandywine CLV Standard: 1424	R Right Thru Left 13 1751 15 VPH 0 3 1 #Lanes	Signal Phasing N-S Split Phase? no E-W Split Phase? yes
VPH # Lanes Left 2 0 Thru 0 1 Right 8 0 R	Intersection CLV: 668 CLV Standard: 1424 Intersection LOS: B or better Better Than CLV Standard	#Lanes VPH R Middle Access #Lanes VPH R Middle Access 1 0 Thru Ver 0 1 Left
Analyst: STS Organization: STS Date of Analysis:03/24	+⊓	CLV (EB) 10 CLV (WB) 5 CLV (NB) 205 CLV (SB) 653 CLV (N-S) 653 CLV (E-W) 15

Project: 900 Rockville Pike Intersection: MD 355 @ Middle Service Drive Scenario: Existing plus Site Time Period: Evening Peak

	MD 355	Î
Brandywine CLV Standard: 1424	R Right Thru Left 30 1464 34 VPH 0 3 1 #Lanes	Signal Phasing N-S Split Phase? no E-W Split Phase? yes
VPH #Lanes Left 2 0 — Thru 0 1 → Right 12 0 — R	Intersection CLV: 765 CLV Standard: 1424 Intersection LOS: B or better Better Than CLV Standard	# Lanes VPH R 0 50 Right 1 0 Thru 0 5 Left
Analyst: STS Organization: STS Date of Analysis:03/24	↑ ↑ ↑ ↑ # Lanes 0 3 0 VPH 1 1783 6 Left Thru Right R	CLV (EB) 14 CLV (WB) 55 CLV (NB) 696 CLV (SB) 554 CLV (N-S) 696 CLV (E-W) 69
Instructions:		• •

Project: 900 Rockville Pike Intersection: MD 355 @ Middle Service Drive Scenario: Existing plus Site Time Period: Evening Peak

	jî.	M	355	1
Brandywine CLV Standard:	1424	R Right Thru 30 1464 0 3 	Left 34 VPH 1 # Lanes	Signal Phasing N-S Split Phase? no E-W Split Phase? yes
VPH Left 2 Thru 0 Right 12 R	# Lanes 0 1 0	Intersection CL CLV Standar Intersection LO Better Than	i: 1424	# Lanes VPH R 1 0 50 Right 1 0 Thru 0 5 Left
Analyst: STS Organization: STS Date of Analysis:0		# Lanes (VPH Le	1 1783 6	CLV (EB) 14 CLV (WB) 55 CLV (NB) 696 CLV (SB) 554 CLV (N-S) 696 CLV (E-W) 69

Project: 900 Rockville Pike Intersection: MD 355 @ North Service Drive

Scenario: Existing
Time Period: Morning Peak

	MD 355	
Rockville CLV Standard: 1424	R Right Thru Left 0 0 0 VPH 0 0 0 # Lanes	Signal Phasing N-S Split Phase? no E-W Split Phase? yes
VPH # Lanes Left 0 0 — Thru 0 0 — Right 0 0 — R	Intersection CLV: 297 CLV Standard: 1424 Intersection LOS: B or better Better Than CLV Standard	# Lanes VPH R North On 1 Right Drive Coess
Analyst: STS Organization: STS Date of Analysis:03/24 Created by Ed Axler	↑ ↑ ↑ # Lanes 0 3 0 VPH 0 799 1 Left Thru Right R	CLV (EB) 0 CLV (WB) 1 CLV (NB) 296 CLV (SB) 0 CLV (N-S) 296 CLV (E-W) 1
Created on: 9/14/87	Lane Utilization Factors:	LOS: CLV># <clv< td=""></clv<>
Updated 6/22/92	A pproach h Turning Movement No .Lanes Left Thru Rght 1 Lane 1.00 1.00 1.00 2 Lanes 0.60 0.53 0.53 3 Lanes 0.45 0.37 0.37 4 Lanes 0.29 0.30 0.30 5 Lanes 0.25 0.25 0.25	A 0 978 A/B 977 1023 B 1022 1128 B/C 1127 1173 C 1172 1278 C/D 1277 1323 D 1322 1428
\p {Calc}{Calc} v-Set /ppos{esc}\027E\027(s bra1.a1~bca1.a20~qrt		D/E 1427 1473 E 1472 1578 E/F 1577 1623 F 1622 9999 -RightsRTOR%RTOR
Turning Factors: Right Turns Through Cars Left Turns	N(sb) S(nb) E(wb) W(eb) N,sb 1.0 1.0 1.0 1.0 S,nb 1.0 1.0 1.0 1.0 E,wb 1.0 1.0 1.0 W,eb	0 0 0% 1 1 100% 1 0 0% 0 0 0%
Created by Ed Axler Created on: 9/14/87 Updated 1/12/89 Updated 2/24/89	.14a.WK4 = Critical Lane Volume-FULI intersecti Does Consider Split Phasing Does Right Turn Checks, too!! With Streamline Format! If #Lns=5,Use Factor=.25	Pg=3 LOS: Pointer er <
Updated 8/18/89 Updated 8/30/89	Improve Alt "P" Macro Vary Turning Factors	A 0 A/B 0

Updated 9/25/89-10	8/9	Vary Lane use Factors	В	0
Updated 1/31/90-11a	8/9	Vary LOS for CLV Value	B/C	0
Updated 2/14/90-11b	9	For MDSHA,0.6=2 Lft Lanes	C	Ö
Updated 2/20/90-11c	9b	Fix CLV-Split Calc, ?#22	C/D	0
Updated 2/22/90-11d	11a	Add "YES" to use Split	D	0
•	11a	Add "MUST hit CALC"	D/E	0
Updated 5/17/90-11d			E	0
Updated 9/26/90-11e	11a	Fix Doc.of Equations	E/F	0
Update 11/27/90-11f	11b	Thru can have 0 Lanes!!	E/F F	0
Updated 5/31/91-12	11c	Check # Receiving Lanes		_
Updated 6/18/91-13(a)		for Merging Rt w/Thru	LOS=	Error
Updated 8/6/91-cch	11d	To Write Alt "S" Macro		
Updated 8/12/91-13b	11d	cell k33 1428 to 1427		
		ed Below on Page 4]		
C:/LotusDta/Counts/CL		a.WK4 =Critical Lane Volume-FULI intersect	tion, versioi	
	11d	Fix Doc.of Equations		Pg=4
	11e	Fix cell O/U/R/X-22		
	&	24 for RTOR w/labels		
	11f	Fix O/U/R/X-22, from \geq to \leq		
	12	Clarify lane use coding in J17 & J18		
	13a	Add receiving lane as part of RTOR check		
	&	Fix cells Q17 U17 W17 Z17,if Split & heav		
	&	Add "R", "r" or" " to permit RTOR, otherwis	e not	
	cch	Simplify display for those with CLV & lotus	3	
		experience by request of Craig Hedberg		
	13b	Improve receiving lanes display as in CLV	CCH	
Updated 9/4/91-13c	13c	Show on page 2, % RTOR @ each interse	ection	
Updated 1/14/92-13d	13d	Fix cell R,U,X,AA 23: Calculation of Opp. I	Lefts	
-		even if Thru lanes=0		
Updated 6/22/92-13e	13e	Fix cells Q,T,W,Z 17 (Rt#5)=> Add receivi	ng	
•		lane(s) to create possible free right & fix		
Note: 13f is 13e for		related cells R,U,X,AA 22 & doc. PLUS F	ix	
Macro5.wk1		cells N37-N40 to correct divide by zero er		
Updated 3/23/93-13g	13g	Fix cell U23 "@IF(V4+S4" from "T4+S4"		
		.WK4 =Critical Lane Volume-FULI intersecti		#13i
Update 3/11/94-13h	13h	Fix cells R,U,X,AA23 <= to > since "<="	07., 10.0.0.	Pg=5
opulie of the tron		no good for opposing lefts with free rights		, 9 0
		Fix cells Q,T,W,Z 17 <= to > since "<=" no		
		for opposing throughs with free rights	3000	
Update 5/25/94-13j	13j	Fix cells R,U,X,AA 23 delete rec'g lane ch	ock	
Update 4/27/98-14a	13j 14a	Lane use factors 0.55> 0.53 & 0,40 > 0.37		TD Guidelines
•			hei iiew ry	TITY GUIDEIIIIES
Update 8/9/01-13k	13k	Remove LOS cells on main display		

```
\fs{esc}{esc}{esc}

C:\\\clvfu|11.wk1

~r~

{goto}b73

\fxf{esc}{esc}

0

~a1..!20~

{quit}

{contents b67,g66&"~r~"}

{Let b67,+b74}{Let b71,+g66+b74}
```

Project: 900 Rockville Pike Intersection: MD 355 @ North Service Drive Scenario: Existing

Time Period: Evening Peak

	MD 355	
Brandywine CLV Standard: 1424	R Right Thru Left 0 0 0 VPH 0 0 0 # Lanes	Signal Phasing N-S Split Phase? no E-W Split Phase? yes
VPH #Lanes Left 0 0 — Thru 0 0 → Right 0 0 — R	Intersection CLV: 757 CLV Standard: 1424 Intersection LOS: B or better Better Than CLV Standard	# Lanes VPH R North 0 18 Right Drive 1 0 Thru ver 0 0 Left
Analyst: STS Organization: STS Date of Analysis:03/24	↑ ↑ ↑ ↑ # Lanes 0 3 0 VPH 0 1996 2 Left Thru Right R	CLV (EB) 0 CLV (WB) 18 CLV (NB) 739 CLV (SB) 0 CLV (N-S) 739 CLV (E-W) 18

Project: 900 Rockville Pike Intersection: MD 355 @ North Service Drive Scenario: Existing plus Site Time Period: Morning Peak

CLV (N-S)

CLV (È-W)

298

	MD 355	1
Brandywine CLV Standard: 1424	R Right Thru Left 0 0 0 VPH 0 0 0 #Lanes	Signal Phasing N-S Split Phase? no E-W Split Phase? yes
VPH #Lanes Left 0 0 — Thru 0 0 — Right 0 0 —	Intersection CLV: 303 CLV Standard: 1424 Intersection LOS: B or better Better Than CLV Standard	#Lanes VPH R North 0 5 Right Drive 1 0 Thru ve 0 0 Left
Analyst: STS Organization: STS Date of Analysis:03/24	+1	CLV (EB) 0 CLV (WB) 5 CLV (NB) 298 CLV (SB) 0

Project: 900 Rockville Pike Intersection: MD 355 @ North Service Drive Scenario: Existing plus Site Time Period: Evening Peak

	ľ	MD 355	
Brandywine CLV Standard:	1424		oo es
VPH Left 0 Thru 0 Right 0 R	# Lanes 0 0	Intersection CLV: 777 CLV Standard: 1424 Intersection LOS: B or better Better Than CLV Standard # Lanes VPH 6 0 33 Rig 10 Th	un Šį.≱
Analyst: STS Organization: STS Date of Analysis:0	1	VPH 0 1996 16 CLV (NB) 7 Left Thru Right R CLV (SB) CLV (N-S) 7	0 33 744 0 744 33

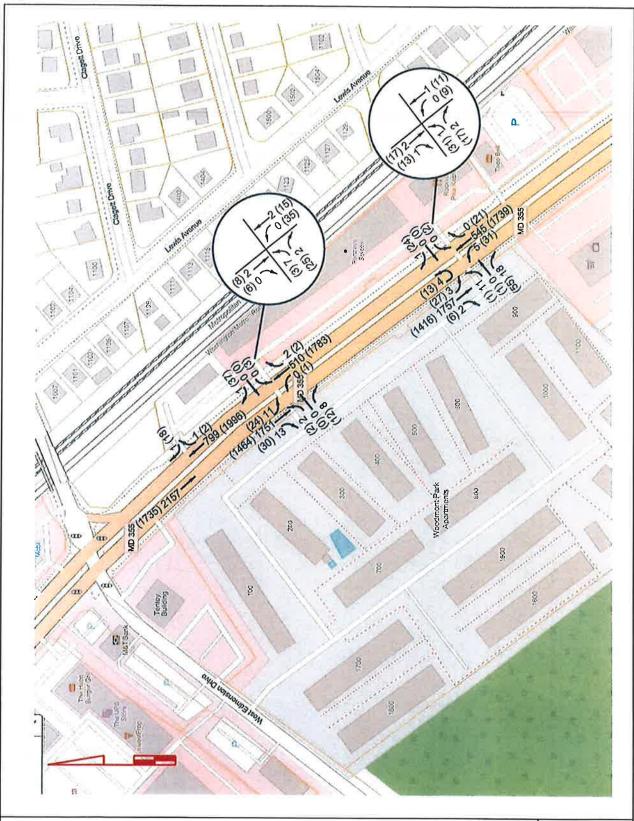


EXHIBIT 1
EXISTING VOLUMES

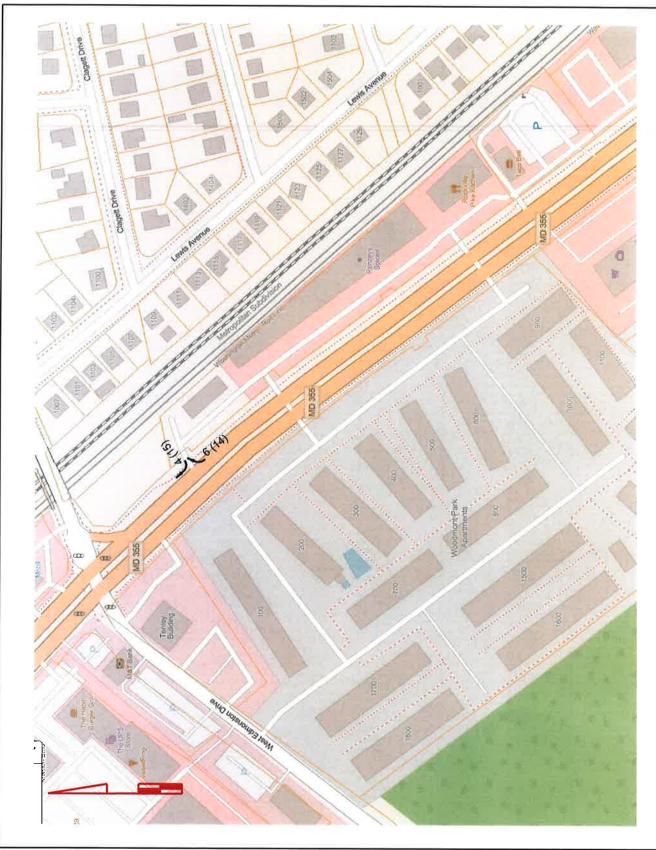


EXHIBIT 2 SITE VOLUMES OPTION 1: NORTH DRIVE

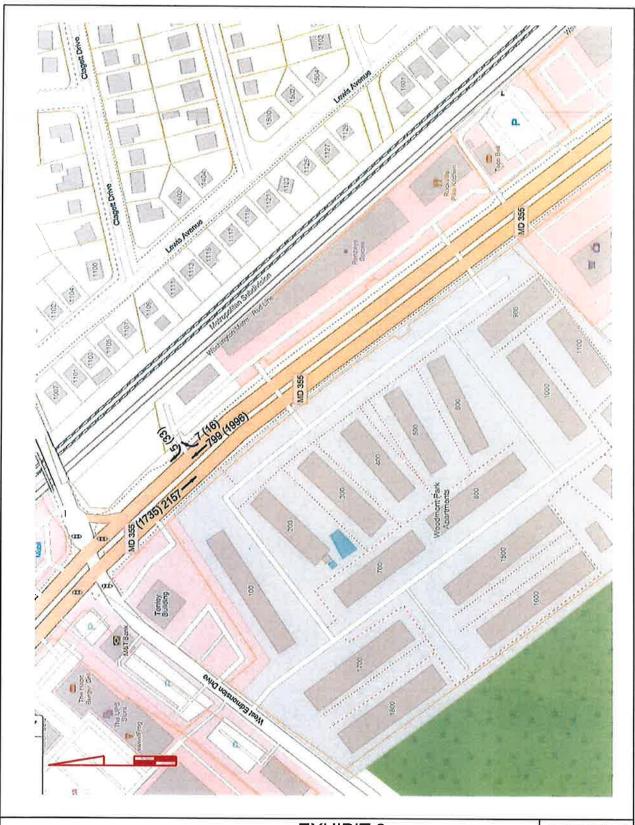


EXHIBIT 3 TOTAL VOLUMES OPTION 1: NORTH DRIVE

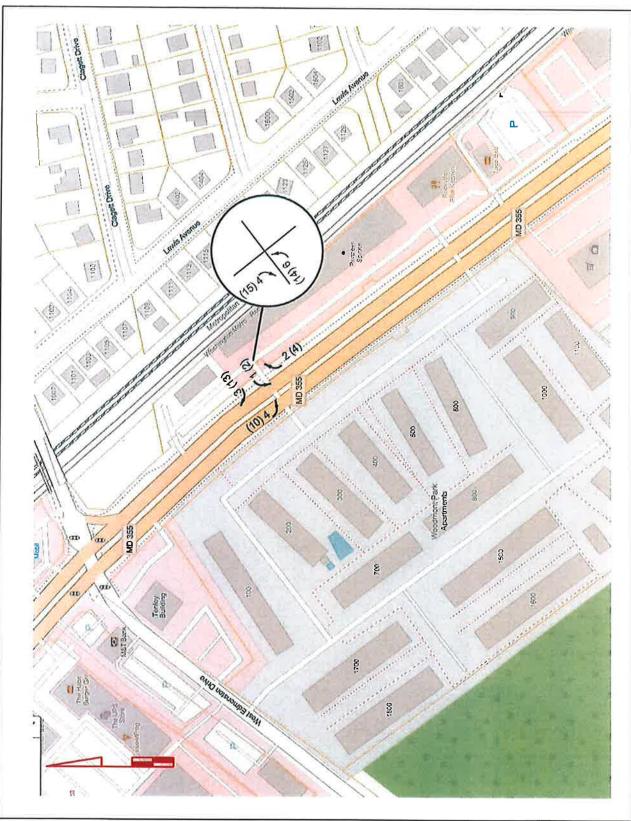


EXHIBIT 4
SITE VOLUMES
OPTION 2: MIDDLE DRIVE

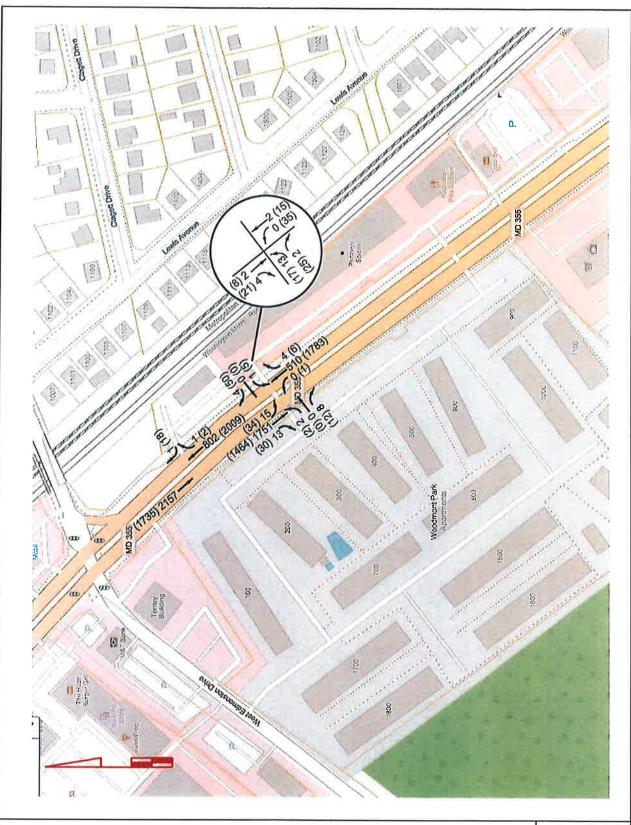


EXHIBIT 5 TOTAL VOLUMES OPTION 2: MIDDLE DRIVE

Intersection Turning Movement Count Data Summary O. R. GEORGE & ASSOCIATES, INC.

Project: Street Traffic Studies, Ltd. (Task # 78)
Location: Rockville Pike @ Shopping ENT. \$
Area/County: Rockville, Montgomery
Day/Date Surveyed: Tucsday (January 30, 2024)

Weather: Mild, Dry Field Techs: SA/CL Reviewed by: ORG

	Internal	Total	I OLE		440	481	629	736	492	169	629	741	605	3	¥.	9/	2958	1.00		738	754	822	776	824	800	816	1881	616	36	956	814	824	802	709	3751	0.98		21314
			Total			0	0	0	•	•	0	0	0 0	> •	0 (-	•	#DIV/0!		0	0	0	0	0	0	0 0	9				0	0	0 (٥	٥	0.00	1	•
			I.Tum		> <	-	۰ .	۰	•	•	0	9	0 6	> 0	0 (•	#DIV/0!		0	•	•	۰	•	•	0 0	9	> <	•	0	0	0	0	0	•	0.00	,	>
		From West	Right		> 0	-	o (۰	0	-	٠,		0 0	۰ د	-	,	•	#DIA/0		0	0	0	٥	0	0	0 0	,		• •	0	0	0	0 (3	0	00.0	١	•
			Thru	ŀ	-	۰ د	0 1	•	•	-	۰,		0	> 0	9 0	,	-	#DIV/0!		0	•	0	٥	•	0	0			•	•	0	0	0	9	•	0000		-
			Leg	<	•	-	-	-	0	-	-		9 0	-	> <		-	#DIV/08		0	•	۰	۰	0	0	0 0				0	0	0	0	•	•	0.00	٠	-
			Total	6	-		> 0	9	o c	> -	- 6		9	- <	> 4	,	4	0.25		7	0		~	7	7 1	7 "		e w	4	7	-	63	-	-	18	0.64	2	ĸ
	11		U-Turn	•			0 0	,	5 6		•						•	#DIV/@		0	•	0	•	۰ د	-	-				0	0	0	0 0	,	•	#DIV/0!	,	>
	Shopping ENT	From East	Right	0	. –					• •		,	4 -				•0	0.25		7	0		~	4 (7 (4 "	-	· W	4	2	-	7	- 9-	1	82	9.64	2	5
	Sb		Thru	0	0		۰ د						0	, 4	• •	-	,	#DIV/0!		0	- -	0 0	0	5 C	5 0		-		•	0	•	۰ د	0 0	,	•	0.00	-	,
Vehicle Volumes			Left	0	0		• •	,		> 0					0	e	,	#DIV/0!		0 (> 0	0 0	9	> <	> <			•	0	0	0	۰ ،	0 0	ŀ	•	0.00	-	,
Vehicle			Total	117	8	130	2	161	186	2 2	39	269	228	326	338	S		1.22		346	<u>ک</u> بر	502	270	1 5	, ç	476	490	211	484	503	94	\$ 5	396	2	1998	96.0	11,76	_
	9	_	U-Turn	•	0		0	,	•			0	0	0	0	-	-	#DIV/01	-	0 0	> <	9 9						0	•	0	0 0		0 0	1	•	0.00	-	,
	Rockville Pike	From South	Right	0	0	0		-				-	0	0	0	-	-	0.25	ŀ	- ·	- 6			0 0	, -			•	_	-		> 0		1	71	0.50	•	
	Rc		Thru	111	8	139	163	981	28	161	239	268	258	326	338	862		173		÷ ;	į į	300	940	43.7	43.	476	490	211	493	203	940	Ž 2	395	l	9661	0.98	2423	
			Len	0	0	0	0	0	0	0	•	0	0	0	0	٥		#DIV/0!	1	> 0			,	•	• •		0	•	•		0 0		. 0		•	0.00	9	
			Total	323	380	490	272	288	583	484	205	334	385	408	432	2157		0.94	200	6 8	4 4	447	177	361	382	405	422	425	437	451	202	2 2	312		1735	0.96	11829	
		Ì	U-Turn	0	•	0	0	0	•	•	•	0	0	0	0	•		#DIV/0!	-			. 0	0	0		0		•	•				. 0	l	0	0.00	•	-
	Rockville Pike	From North	Right	0	0	0	0		0	0	0	0	0	0	0	•	1	#DIV/0: #	-				0	0	0	0	0	•	0	0		-	. 0		0	0.00	0	22
$\ \ $	Ro	ie.	Thru	323	<u>8</u>	8	572	288	583	2 84	502	334	385	408 408	432	2157		0.94	205	4 4	416	447	373	361	382	402	422	425	37	451	307	35.	312		1735	96.0	11829	
			Left	•	0	-	0	0	•	0	0	0	0	0	0	•		#DIV/0!	-		0	0	0	0	0	0	•	•		9	9 0		0	-	•	0.00	•	1
	15-Minute Interval	(Ending)		7:15	7:30	7:45	8:00	8:15	8:30	8:45	9:00	11:15	11:30	11:45	12:00	AM Peak Hour Total		AM Peak PHF	12:15	12:30	12:45	13:00	16:15	16:30	16:45	17:00	17:15	17:30	17:45	18:00	18:30	18:45	19:00		PM Peak Hour Total	PM Peak PHF	Hour Total	

Intersection Turning Movement Count Data Summary O. R. GEORGE & ASSOCIATES, INC.

Project: Street Traffic Studies, Ltd. (Task # 78)
Location: Rockville Pike @ Shopping Ent. 2
Area/County: Rockville, Montgomery
Day/Date Surveyed: Tuesday (January 30, 2024)

Weather: Mild, Dry Field Techs: SA/CL Reviewed by: ORG

	laterial	Total	Total		2 482	_				_	_			743	-	2.0 2.308	0.63 0.77	-				5 835		845	1						†18 9			0.70 0.95	13F12 66
	NT. 2	25	U-Turn	٥	•	•	0	0	0	0	0	0	0	0 :	0	•	#DIV/01		0 0	-	0 0	0	0	0	0 0	0	. 0	0	0	0	0 6	0	,	#DIV/0!	0
	Woodmont ENT. 2	From West	Right	-	0	٤	-	14.	-	-	-	**4	٠٠,		,	90	0.50		•			u,	-	7	+ 4		N	۲,	-	**	т (2	!	09.0	89
	14.0		Thru	0	•	-	0	0	0	0	0	_	0	0	0	•	#DIV/0;	c	0 0	5 0	0	0	•	0	5 5	0	0	0	0	0	50	0		#DIV/0!	-
			Left	s	~		7	m		-	-	0	0	- 0	9	12	0.60		0 0	5 6	-	0	~1	0%	- "	. 0	_	-	-	0	er c			0.25	30
			Total	0	· ·	-14		+	C.J.	0	0	30	·	0 4		-	0.25		0 1	- =	c	9	13	2	0 0	r	œ	1	6	2	0 0	9		0.67	186
	t. 2		U-Tum	0	-	• •		0	0	0	0	0	c -	0 0		-	#DIV/0!	5			0	0	0	0 0	0	c	o	0	0 0	0 (0 0	0		#DIV/0!	0
	Shopping Ent.	From East	Right	0				ŧ.	-	0	0	٥	5	2 4			0.25	,	~ 4	, ,	=	9	13	12		9	00	-	2	10	5 0	37		0.71	168
	Sho		Thru	0	٠.	- 6	9	0 (0 (o	0	0	5 0	0 6		•	#DIV/0;	-			0	0	•	0 0	0	0	0	0	0 0	0	0 0	0		#DIV/0;	-
Vehicle Volumes			Left	0 9	> =			> -	- 0	0 1	٥	٠, ٠	4 5	0 -		5	#DIV/0;	-	-	-	-	0	0	m c		(-	0	0	-	÷ .	0	-		0.25	17
Vehicle			Total	114	130	166	001	0/1	7 6	7	239	595	500	336	513	7.17	0.77	yF2	. 95	7	212	445	425	¥ 5	101	503	489	506	9 5	77	381	1788		96'0	7626
	33	_	U-Tum	0 0				000	3 6	0 0	0	5 0	> 0	5 0		,	#DIV/0;		. 0	0	-	-	0	0 -		=	-	·		o -	- 0	м		0.50	16
	Rockville Pike	From South	E	•					9 6	90	-	7 3			,		0.50	c) (I	rı	-	0	0 0	o r	-,	-	-	٥-			1:	7	1	0.25	35
	Ro	-	Thru	- E	138	29	2,4	161		100	230	200	91.0	0 15	915		0.77	343	346	339	315	7	475	469	485	501	487	764	100	21+	380	1783		96.0	9241
		İ	Left	0 0			0		> <	> <			> <	00	-		#DIV/0!	0	0	0	0	0	0 0	0	0	0	0				. 0	-		0.25	N.
			Total	323	780	573	385	583	200		204	200	111	43.5	1775		0.78	986	904	121	44.7	379	705	383	423	426	440	124	101	0,7	312	1529		0.94	11871
			U-Turn		•		0							m	-		#DIV/0!	-	ni	v.	0	9.		- 10	-	_	ms	0			0	=		0.46	- 7
	Rockville Pike	From North	표	-1 m	. 12	· vo	,,		. ,	. •				, r-	5		9.65	10	_	0	.,	2	ء م	~ in	9	2	9 (, -	. 4			30		0.63	109
	Rot	FF	_	385	186	562	188	285	176	107	23.1	360	70:	117	1751	1	0.78	E	392	106	433	357	1 5	393	410	415	427	392	583	1	303	1464		0.93	11531
			Left	1 7	_	v	-7	-	- 9		-	- 1	-	! =	=		0.55	=	=	10	10	- :	= 4	. +	٥	×	r	-			45	24	+	0.55	189
	15-Minute Interval	(Ending)	31.7	7:30	7:45	8:00	8:15	8:30	57.00	90.6	11:15	11-30	92	12:00	AM Peak Hour Total		AM Peak PHF	12:15	12:30	12:45	13:00	16:15	16.45	17:00	17:15	17.30	17,45	18-15	05:81	57.81	19:00	PM Peak Hour Total		PM Peak PHF	Hour Total

O. R. GEORGE & ASSOCIATES, INC. Intersection Turning Movement Count Data Summary.

Project: Street Traffic Studies, Ltd. (Task # 78)
Location: Drive Aisle @ Shopping ENT. 2
Area/County: Rockville, Montgomery
Day/Date Surveyed: Tucsday (January 30, 2024)

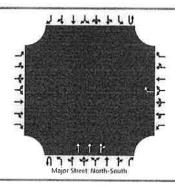
Mild, Dry	SA/CL	ORG
Weather:	Field Techs:	Reviewed by:

										Vehicle	Vehicle Volumes										
15-Minute Interval			Drive Aide	اي				Drive Aiste	ė.								Sho	Shopping ENT. 2	T.2		ļ
(Leding)			From North	ą.				From South	ą				From East					From West			Total
	2	ᄱ	Right	U-Tura	Total	3	Ę	Right	U-Turn	Total	3	Thr	Right	U-Tum	Total	5	100	Right	II-Tan	1	
7:15	0	0			•	0	0	0	0	0	۰	0			0	-		-	,		
3 3		•		•	0	0	-	•	•	÷	۰	۰	•	•	0	. ~		• •	•	• •	ă.
9 5	0	- 0	0	0	-	0	0	•	•	•	•	•	•	•						٠.	
9200	0	-			-	0	-	0	0		•	0	•	•	0					• •	1
513	0		_	0	_	•	0	0		7	٥	0	0			,-		1			0 0
2:30	•	•	0	0	•	7	-	0	٥	~	0	٥	0	-			• •			٠.	•
6:45	•	•	0	0	0	0	۰	0	0	0	0	0								٦ ٢	* 1
006	0	-	0	0	-	0	7	0	0	~	0	0			0	٠.			-	8	- :
11:15	0	7	~	0	4	9	4	٥	0	01	0		0	•			,	1			=
8 :	•	-	_		7	4		•	0	4	۰	0	0			, ,				. :	3;
11:45	•	•	•	0	0	a	s	0	0	=	•							• =		2 :	17 5
12:00	0	-			-	~	•	0	0	*	۰	0	0	. 0	0	. ~		•	+ -	2 2	8 2
AM Peak Hour Total	۰	*	0	0	2	0	*	۰	•	**	۰	٥	۰			,	-	-	-	2	7
AM Peak PHF	#DIV/0;	0.50	#DIV/0!	#DIV/0!	0.50	#DIV/0!	05'0	#DIV/0!	#DIV/0!	850	#DIV/0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	85.0	#DIV/0!	05.0	820	69'0	0.58
12:15	0	۰	-	0	3	9	2			95	٥			-		-			1		
12:30	0	-	*	0	*		2									,	,	0	7	=	2
12:45	0							> <	-	o :	•	۰ ،		-		4	0	9	0	2	23
13:00	. 0	. 71	-	0	4 m		٠, ٠,	0		2 2	0 0	0 0	0 0	0 0	0 0	٠,	0	00	m	15	72
16:15	0	-	~	۰	-	6	3			2			,		,	1	-	10	•	=	36
16:30	•	7	~	•	4	2	7	•		2	•						•	+ ;	0	٠:	2
16:45	•	~	-	•	М	=	6	•	0	. 7				•				2 4		= \	2 3
17:00	٥	-	-	•	*	S	2	0	0	7	۰		. 0				• •	n e		۰,	2 :
17.15	0	7	2	•	4	0	7	0	0	12	0	۰		0		-	0		,		
17:30		~	_	•	m	~	2	0	0	7	۰	۰	0	0			•			. 0	2
11.45			7	0	m	••	n	0	•	=	۰	۰	0	0	0	~		~		4	. =
18:15			-		1		1	0	0	=	0	0	۰		0	s	٥	80	٥	13	52
18:30		٥	. ,,				• •		0	2 :			0	0	•	0	0	-	0	-	91
18:45									-	2 :		0	0	0	0	-	•	9	•	٥.	N
19:00	•	-	-		. 4	, ,	n n			7 0	- 6	0 0	0 0	0 0	0 0	m (0	••	0	= }	56
											,	,	1	,	•	,	0	•	•	•	61
PM Peak Hour Total	0	80	v		2	35	15	0	•	જ	•		0	•		E		22	0	82	26
PM Peak PHF	#DIV/0:	0.67	0.75	#DIV/0!	0.83	080	95.0	#DIV/0:	#DIV@	0.74	aDIV/0!	#DIV/0:	(EDIVA):	#DIV/0t	#DIV/0:	0.75	#DIV/0	5970	#DIV/A!	1970	0.72
	,	1		,				1 2							Ī	T	T		T	T	
Hour I of 21	•	3	8	•	8	35	٤	0	•	278	•	•	0		•	92	•	3	6	219	513
									1							1					

O. R. GEORGE & ASSOCIATES, INC. Intersection Turning Movement Count Data Summary

Project: Street Traffic Studies, Ltd. (Task # 78)
Location: Rockville Pike @ Shopping ENT. 3
Area/County: Rockville, Monigomery
Day/Date Surveyed: Tuesday (January 30, 2024)

Mild, Dry	SA/CL	: ORG
Weather:	Field Techs:	Reviewed by:


	į	Interval	Total		3 5	7 5	55	703	187	917	970	736	613	652	121	2345	0.80		75.	15.	786	811	780	863	808	923	8 8	944	823	832	821	674	3322	960	21359
				Total	2	2 .	n o			o r	٠,	×		x 0 r	n 4	62	0970		4 4		- 50		6	21 5	2,	7 1	. 17		4	٠,	7	63	34	0.71	174
		cur. 1	i	U-Turn	9 0		- 0		> 0	> <	> 0	9	> <	> <	0		#DIV/0:	[> 0	• •	0	۰	•	•	,	9 0		•	-	•	•	0	0	#DIV/0!	•
	Woodman	TOOR ET SEE	rom West	Right		• •		,		0 4	0 0		0 1	٠,	2	82	98.0	,	۷ ۰	4	٠.		۰	= 5	2	4 6	·m	60	3	4	9	3	ĸ	0.75	148
	3		ŀ							-			-			۰	#DIV/0!	6	• •		0		•	0 0		o: =	•	0	-	•	•	۰	•	#DIV/0;	-
l	L		ŀ	3	۰ ٦	-	**	-	- ~	٦ -					۰ ۸	=	0.69	-	. –		-	0	-			• •	. 0	0	0	-	-	٥	N##	0.25	n
l				4	• •	-			2	ء د		-	• •		. 2	2-1	0.25	,	9	•	7	7	N)	1 00 00		2	•	6	6	m	0	00	36	0.81	141
	06.3				•			0		0		, .		۰ -		0	#DIV/0:	6		0	0	0	•	0 0			0	0	0	0	0	0	•	#DIV/0!	•
	Shonning Ent. 3	From Fact	Diche	•	•	-	•	-	_			_			7	R	0.25	4	90	s	2	9	vo .	9 1	,	, 2	9		,	m.	6	^	22	0.86	911
	57		T.	•		•	•		0	•			-		0	0	#DIV/0:		0	0	0	0	> •	0 0	6	•	0	0	0	•	0 (٥	•	#DIV/0:	•
Vehicle Volumes			-		•	•	•	0	-	•	-				୍ଦ	•	#DIV/0!	2	7	-	7	-		o -		7	7	-	2	0	0	2	7	0.50	25
Vehicle			Total	110	133	137	163	288	221	189	239	263	566	327	334	252	0.85	356	342	356	327	438	974	466	200	505	477	484	448	435	456	308	1800	96.0	9433
	Je Je	8	Il-Tem	0	0	_	-	_	7	0	7	3	2	~	2	2	0.50		m	'n	-	n 1	· ·	- 7	-	-	-	4	7 .	7 '	4	1	••	0.67	S
	Rockville Pike	From South	Ripht		•	0	0	-	•	0	0	3	7	'n	5	0	#DIV/0!	s	-	4	=	m i	- 4	0		m	m	0	2,		0 :		n	6.79	114
	~		Tera	116	132	136	161	179	216	187	234	256	260	313	324	28	0.85	344	336	333	308	429	945	451	489	493	\$	408	575	9 9	35	220	1739	96.0	7116
			re.	3	-	0	-	7	m	7	10	_	7	4		s	0,42	4	7	₹	-	* §	2 5	3 r	_	•	6	0	= =	= -	+ 0		31	0.78	143
			Total	320	387	492	564	286	286	480	488	341	374	395	423	1763	0.78	380	393	\$	446	3 5	3.2	384	415	419	418	245	700	340	300	2	1462	0.95	11911
	ke	ے	U-Tum	0		_	-		•	•	2	-	•	_	-	•	1.00	7	7	7	-	o 4	. "	0	4	-	7 1	1	7 -			•	53	9.68	2
	Rockville Pike	From North	Right	0	0	-,,	-	_	0	0	0	0	0	7	0	2	0.50	2	0	0		7 0	-	m	-	•	0 (*	-			T	•	0.50	n
	2		Thru	319	387	6	261	582	283	480	482	334	366	379	412	17571	0.78	367	379	<u> </u>	430	3 2	363	377	ş	9	60	356	378	3 7	284		1416	0.94	11374
		8	Teg.	-	۰.	0	2	2 (m	•	7	m	00	<u>17</u>	0	e	0.38	6	2 (» :	= -		2	*	٥				. 0	` _	0		72	99'0	171
	15-Minute Interval	(Ending)		7:15	7:30	7:45	8:00	8:15	06:3	8:45	00:6	11:15	11:30	1.45	12:00	AM Peak Hour Total	AM Peak PHF	12:15	12:30	12:45	00:51	16:30	16:45	17:00	17:15	17:30	17:45	10.01	18:30	18:45	19:00		PM Peak Hour Total	PM Peak PHF	Hour Total

O. R. GEORGE & ASSOCIATES, INC. Intersection Turning Movement Count Data Summary

Project: Street Traffic Studies, Ltd. (Task # 78)
Location: Drive Aisle @ Shopping ENT. 3
Area/County: Rockville, Montgomery
Day/Date Surveyed: Tuesday (January 30, 2024)

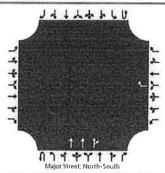
		_			Т	_		Т	_		1		_		-		T	_			_			Т			1		_	_	-		_
		Interval	Total		-		7		· 107	, re	٥:	2 2	2	3	7	0.58			2 22	7 ;	82 82	123	% ;	5 81	28	2	2 2	2	92 ;	190	0.81	1	770
				Total	-	. 0	0,1	7	r m	•	*	9 5		12	m	0.38		41	=	8	10	n	9:		-	٥:	- 6		2	2 05	0.78	ŧ	:
Weather: Mild, Dry eld Techs: SA/CL iewed by: ORG		ĄT.3		E-17:	0	•	0	0		•	0	•	0		•	#DIV/0!		-	. –	7	- 0	•	-16		. 0	7 -	-	-		2	050	5	3
Weather: Mild, I. Field Techs: SA/CL Reviewed by: ORG		Shopping ENT. 3	From West	Richt	-	0	0	,	i m	0	m	1 9	80		7	05.0		-	9	ın r	-	7	4 4	, ,	· m		, 0	'n	4.	. 2	0.61	8	2
Fiel Revi		g.		Thre		•	0.0	90	0	0	0	0	0	0	•	#DIV/00		6	0	0 0	0	•	0 0	0	0	0	0	0	0 0	0	#DIV/0:	-	,
				3	0	•	۰.	-	0	۰.	-	4	2 1	- 10	-	0.25		7	4	91	2 %	=	I 4	9	4	- 4	16	7	00 C	3	0.70	5	
				Total	0	0	0		0	0	0	0	0	>	•	#DIV/0!		0	0	00	0	•	0 0		0	0 0		0	0 0	٥	#DIV/0!	•	,
			<u></u>	U-Turn	0	•	0 0	0	•	•	9 0	•	00	•	•	#DIV/0!		0	•	0 0	0	•	0 0		•	0 0		0	0 0	-	#DIV/00	•	
			From East	Right	0	•	0	0	0	0 0	0	0	0 0		•	#DIV/0!		0	•	00	0	0	- -	0	•	0 0		0	٥.	0	(DIVA)	•	,
			1	f	0	•	0 0		0	0 0	0	•	0 0	,	•	#DIV/0;		0	0	00		0	9 0	0	0	0 0	0	0	00	0	#DIV/0!	۰	
	Vehicle Volumes			Left	0		0 0		0	0 0	0	•	0 0	,	•	#DIV/0;		٥	•	0 0	0	•	- 0	•	0	0 0	0	•	00	•	#DIV/0!	0	
	Vehicle			Total	0	-	0 0	7	2	۰ ۳	2	-	v 5		•	0.25		4	_	4 0	7	40 -	10	2	<u>n</u>	4 4	9	8	vi (m	70	0.56	109	
		و	g.	U-Tum	0	•	- 0	0	•			0	00		,	#DIV/0!		0	0	00	0	•		0	0	0	0	0	0 0	۰	#DIV/0:	•	
		Drive Aisle	From South	Right	0	•	•	0	0	0 0	0	•	0 0	•	•	#DIV/0!		0	0	00	0	0 0		0	0		0	0	00	0	#DIV/0:	۰	
				ם	0		•	2		o m	2	•	4 w	-	•	0.25		-		- m	-	m =	9	0	۲.		3	m 1	7 0	11	0.46	51	
				7	0	•	• •	0	7 0	0	•	-	- 5	٠	,	#DIV/0:			9 (n ia	-	7 "	m	2	9,	. 6	3	7 (n m	6	0.75	88	
				Total	0	> e	4 300	-	۰ ،	1 11	4	9	m =		٠	0.38		S	m t	П	۰ 0	~ <	=	7	oo v	. 6	00	7 0	e v	36	0.68	141	
NT.3		ايد		U-Tura	0	-		0	0 0	00	0	۰ ،	00	۰		#DIV/0;		0	0 0	0	0	> =	0	0	0 0	. 0	0			•	#DIV/0	-	
Drive Aisle @ Shopping EN Rockville, Montgomery Tuesday (January 30, 2024)		Drive Aisle	From North	Right	0 0	> -	0	۰.	٥ ،		7	m -	- 4			0.25			m -	3	٠,	4 6	4	4	v (. 4	٠,		٠ 4	១	0.81	99	
Drive Aisle @ Shopping Rockville, Montgomery Tuesday (January 30, 2				THE.	0	> -	-		0 0	•	7	m r	1	7		0.50		2	0 4	0 00	~ .	n ea	7	m .	ή ε	S	ω.	- "	0	11	0.61	27	
Drive A Rockvill Tuesday				٤	•	•	۰	0 0	-		0	۰ ۵		•		#DIV/0!		0	> <	0	0 0	•	0	0	> C	0	0	-	0	۰	#DIV/0:	۰	
Location: Drive Aisle @ Shopping ENT. 3 Area/County: Rockville, Montgomery Day/Date Surveyed: Tuesday (January 30, 2024)		15-Minute Interval	(Suma)		7:15	7:45	8:00	8:15	8:45	9:00	11:15	11:30	12:00	AM Peak Hour Total		AM Peak PHF		12:15	12:30	13:00	16:15	16:45	17:00	17:15	17:45	18:00	18:15	18:45	19:00	PM Peak Hour Total	PM Peak PHF	Hour Total	

	HCS Two-Wa	y Stop-Control Report	
General Information		Site Information	
Analyst	Nelson	Intersection	Option 1 North Driveway
Agency/Co.		Jurisdiction	Rockville
Date Performed	3/1/2024	East/West Street	North Driveway
Analysis Year	2024	North/South Street	MD 355
Time Analyzed	AM Peak Existing	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	900 MD 355 Access Study		

Vehicle Volumes and Adjustments

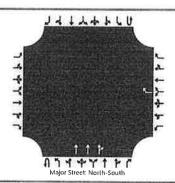
Approach		Eastb	ound			West	bound			North	bound			South	nbound	
Movement	υ	L	Т	R	U	L	T	R	U	L	Т	R	U	L	T	F
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	1	0	0	3	0	0	0	0	10
Configuration								R			T	TR				\vdash
Volume (veh/h)								1			799	1			—	T
Percent Heavy Vehicles (%)								3								T
Proportion Time Blocked																\vdash
Percent Grade (%)						-	0				-	-				_
Right Turn Channelized	T					N	lo									
Median Type Storage				Left +	- Thru		-						1			
Critical and Follow-up H	eadway	/s							-							
Base Critical Headway (sec)	T							7,1								
Critical Headway (sec)								7.16								H
Base Follow-Up Headway (sec)								3.9								
Follow-Up Headway (sec)	-							3.93						-		
Delay, Queue Length, and	d Level	of Se	rvice													
Flow Rate, v (veh/h)	Т							1								
Capacity, c (veh/h)								485								
v/c Ratio								0.00					-		\vdash	
95% Queue Length, Q ₉₅ (veh)								0.0								
95% Queue Length, Q ₉₅ (ft)								0.0								-
Control Delay (s/veh)								12,4								
	-			-											4	4

Level of Service (LOS)


Approach LOS

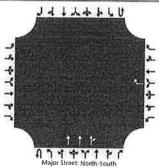
Approach Delay (s/veh)

12.4

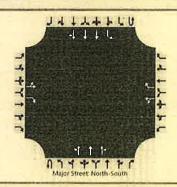

В

	HCS Two-Wa	y Stop-Control Report	
General Information		Site Information	And the second s
Analyst	Nelson	Intersection	Option 1 North Driveway
Agency/Co.		Jurisdiction	Rockville
Date Performed	3/1/2024	East/West Street	North Driveway
Analysis Year	2024	North/South Street	MD 355
Time Analyzed	AM Peak + site trips	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	900 MD 355 Access Study		

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	1	0	0	3	0	0	0	0	0
Configuration								R			Т	TR			1	
Volume (veh/h)								5			799	7				
Percent Heavy Vehicles (%)								3								
Proportion Time Blocked	T															
Percent Grade (%)	T					(0									
Right Turn Channelized	1					N	lo									
Median Type Storage				Left +	Thru								1			
Critical and Follow-up H	eadway	/5														
Base Critical Headway (sec)								7.1								Г
Critical Headway (sec)	T							7.16								
Base Follow-Up Headway (sec)								3.9								
Follow-Up Headway (sec)								3.93								
Delay, Queue Length, an	d Level	of Se	rvice													
Flow Rate, v (veh/h)	T							5								
Capacity, c (veh/h)								482								
v/c Ratio								0.01								
95% Queue Length, Q ₉₅ (veh)								0.0								
95% Queue Length, Q ₉₅ (ft)		T						0.0	1							
Control Delay (s/veh)								12.6								
Level of Service (LOS)								В								
Approach Delay (s/veh)	T					12	.6									
Approach LOS	1					В										


	The second second second second second		and the second of the second of the second
General Information		Site Information	
Analyst	Nelson	Intersection	Option 1 North Driveway
Agency/Co.		Jurisdiction	Rockville
Date Performed	3/1/2024	East/West Street	North Driveway
Analysis Year	2024	North/South Street	MD 355
Time Analyzed	PM Peak Existing	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	900 MD 355 Access Study		

Vehicle Volumes and Adjustments

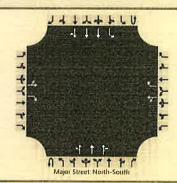

Approach		Eastb	ound			West	bound			North	bound		I	South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	1	0	0	3	0	0	0	0	0
Configuration								R			Т	TR			1	
Volume (veh/h)								18			2009	2				_
Percent Heavy Vehicles (%)								3								1
Proportion Time Blocked											777					
Percent Grade (%)		-		-		()									
Right Turn Channelized	1					N	0									
Median Type Storage				Left +	Thru								7.11	-		
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	1							7.1								
Critical Headway (sec)								7.16								-
Base Follow-Up Headway (sec)								3.9								
Follow-Up Headway (sec)								3.93							_	
Delay, Queue Length, an	d Leve	of Se	rvice													
Flow Rate, v (veh/h)	T							20								
Capacity, c (veh/h)								178								
v/c Ratio								0.11								
95% Queue Length, Q ₉₅ (veh)								0.4								
95% Queue Length, Q ₉₅ (ft)								10.2	$\neg \uparrow$							
Control Delay (s/veh)								27.6	\neg			\neg		_		
Level of Service (LOS)								D								
Approach Delay (s/veh)						27.	6									
Approach LOS	1			\neg		D	-									

	Site Information	er dr 350 P. Hardan
on	Intersection	Option 1 North Driveway
	Jurisdiction	Rockville
2024	East/West Street	North Driveway
	North/South Street	MD 355
eak w/ site trips -	Peak Hour Factor	0,92
n-South	Analysis Time Period (hrs)	0.25
MD 355 Access Study		
	on 2024 Peak w/ site trips - h-South MD 355 Access Study	Intersection Jurisdiction 2024 East/West Street North/South Street Peak w/ site trips - Peak Hour Factor Analysis Time Period (hrs)

Valida Valuus - 1 A 1			-			I Ziteet No	m-south									_
Vehicle Volumes and Ad	justme	nts														
Approach		East	oound			West	bound			North	bound			South	bound	
Movement	U	Ł	T	R	U	L	T	R	U	L	T	R	U	L	T	F
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	-
Number of Lanes		0	0	0		0	0	1	0	0	3	0	0	0	0	
Configuration								R			T	TR	-	 	-	-
Volume (veh/h)								33			2009	18		-	-	-
Percent Heavy Vehicles (%)								3								\vdash
Proportion Time Blocked											1					-
Percent Grade (%)	1				-	()									-
Right Turn Channelized	1					N	lo									-
Median Type Storage	1			Left +	Thru			_		-	***************************************					-
Critical and Follow-up H	eadway	/S														_
Base Critical Headway (sec)	T							7.1								
Critical Headway (sec)								7,16				_				-
Base Follow-Up Headway (sec)								3.9								-
Follow-Up Headway (sec)								3.93					\neg			_
Delay, Queue Length, and	d Level	of Se	rvice										-			
Flow Rate, v (veh/h)	T	1						36								-
Capacity, c (veh/h)			T		Ì			176								_
v/c Ratio			T					0.20							$\neg \neg$	-
95% Queue Length, Q ₉₅ (veh)								0.7			\dashv		-		-	-
95% Queue Length, Q ₉₅ (ft)								17.9	_		-		-		-	_
Control Delay (s/veh)								30,6				-	\dashv	_	-	
Level of Service (LOS)			\neg					D	\dashv						-	
Approach Delay (s/veh)	1					30.	6	-				\neg				_
Approach LOS				-		D		-				\rightarrow				

	HCS Two-	Way Stop-Control Report	
General Information		Site Information	
Analyst	Nelson	Intersection	MD 355 - Mlddle Driveway
Agency/Co.		Jurisdiction	rockville
Date Performed	2/6/2024	East/West Street	Middle Drive
Analysis Year	2024	North/South Street	MD 355
Time Analyzed	am peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle '	Volumes	and Ad	justments
-----------	---------	--------	-----------


Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	0	3	0	0	1	3	0
Configuration		LT		R		LT		R		LT	Т	TR		L	T	TR
Volume (veh/h)		2	0	12		0	0	1	- 3	0	510	2	0	11	1751	13
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3			3	3		
Proportion Time Blocked		0.000	0.000	0.000			0.000	0.000						0.000		
Percent Grade (%))	J. E. J.			0									
Right Turn Channelized		N	lo	. 3		1	No				-					
Median Type Storage				Left +	Thru							-				
Critical and Follow-up He	adwa	ys														

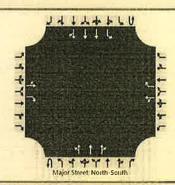
ļ	Base Critical Headway (sec)	6.4	6.5	7.1	6.4	6.5	7.1	5.3		5,3	
1	Critical Headway (sec)	6.46	6.56	7.16	6.46	6.56	7.16	5.36		5.36	
	Base Follow-Up Headway (sec)	3.8	4.0	3.9	3.8	4.0	3.9	3.1		3.1	
	Follow-Up Headway (sec)	3.83	4.03	3.93	3.83	4.03	3.93	3.13		3.13	

Delay, Queue Length, and Level of Service

	Marie Control	AND DESCRIPTION OF THE PERSON NAMED IN				the second second second		CALL THE PARTY OF
Flow Rate, v (veh/h)	2	13	0	1	0		12	
Capacity, c (veh/h)	41	220	0	611	136		633	
v/c Ratio	0.05	0.06		0.00	0.00		0.02	
95% Queue Length, Q ₉₅ (veh)	0.2	0.2		0.0	0.0		0.1	
95% Queue Length, Q ₉₅ (ft)	5.1	5.1		0.0			2.6	
Control Delay (s/veh)	98.4	22.4		10.9	31.5	0.0	10.8	
Level of Service (LOS)	F	С		В	D	A	В	
Approach Delay (s/veh)	33.	.3			(0.0		0.1
Approach LOS	D					A		A

	HCS Two-Way	Stop-Control Report	
General Information		Site Information	
Analyst	Nelson	Intersection	MD 355 - Middle Driveway
Agency/Co.		Jurisdiction	rockville
Date Performed	2/6/2024	East/West Street	Middle Drive
Analysis Year	2024	North/South Street	MD 355
Time Analyzed	am peak & side horps	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

V	ehic	le V	olumes	and A	١dj	justments
---	------	------	--------	-------	-----	-----------


		_		_							200					
Approach		Eastb	oound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	0	3	0	0	1	3	0
Configuration		LT		R		LT		R		LT	Т	TR		L	Т	TR
Volume (veh/h)		2	0	12		1	0	4		0	510	4	0	15	1751	13
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3			3	3		
Proportion Time Blocked		0.000	0.000	0.000		0.000	0.000	0.000					100	0.000		177
Percent Grade (%)			0				0	18								
Right Turn Channelized	-	٨	10			N	lo				- 1900			- L		
Median Type Storage				Left +	Thru								1			
Critical and Follow-up He	adwa	ys				Υ.	EM		3 -	14.75						
						1				_				,		_

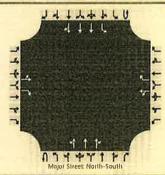
ı	Base Critical Headway (sec)	6.4	6.5	7.1	6.4	6.5	7.1	5.3		5.3	
	Critical Headway (sec)	 6.46	6.56	7,16	6.46	6.56	7.16	5.36		5.36	
	Base Follow-Up Headway (sec)	3.8	4.0	3.9	3.8	4.0	3.9	3.1		3.1	
	Follow-Up Headway (sec)	3.83	4.03	3.93	3,83	4.03	3.93	3.13		3.13	

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	2	13	1	4	0		16	
Capacity, c (veh/h)	40	220	272	610	136		632	
v/c Ratio	0.05	0.06	0.00	0.01	0.00		0.03	
95% Queue Length, Q ₉₅ (veh)	0.2	0.2	0.0	0.0	0.0		0.1	
95% Queue Length, Q ₉₅ (ft)	5.1	5.1	0.0	0.0			2.6	
Control Delay (s/veh)	100.5	22.4	18.3	10.9	31.5	0.0	10.8	
Level of Service (LOS)	F	С	С	В	D	A	В	
Approach Delay (s/veh)	3:	3.6		2.4	(0,0	(0.1
Approach LOS		D		В		A		A

	HCS Two-	Way Stop-Control Report	
General Information		Site Information	
Analyst	Nelson	Intersection	MD 355 - Mlddle Driveway
Agency/Co.		Jurisdiction	rockville
Date Performed	2/6/2024	East/West Street	Middle Drive
Analysis Year	2024	North/South Street	MD 355
Time Analyzed	pm peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle	Volumes a	and Ad	iustments
			1


Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	T	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	0	3	0	0	1	3	0
Configuration		LT		R		LT		R		LT	Т	TR		L	T	TR
Volume (veh/h)		2	0	12		3	0	37		1	1783	2	0	24	1464	30
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3			3	3		
Proportion Time Blocked		0.000	0.000	0.000		0.000	0.000	0,000		0.000				0.000		
Percent Grade (%))				0									
Right Turn Channelized		N	lo			N	lo									
Median Type Storage				Left →	Thru			127				4	1			
Critical and Follow-up He	eadwa	ys		7-3			= 11			7						
Bass Critical Handway (san)	T		CE	7.4												

ı	Base Critical Headway (sec)	6,4	6.5	7.1	6.4	6.5	7.1	5.3		5.3	
	Critical Headway (sec)	6.46	6.56	7.16	6.46	6.56	7.16	5.36		5,36	
	Base Follow-Up Headway (sec)	3.8	4.0	3.9	3.8	4.0	3.9	3.1		3.1	
	Follow-Up Headway (sec)	3.83	4.03	3.93	3.83	4.03	3.93	3.13		3.13	

Delay, Queue Length, and Level of Service

- stay/ caree astrony unit			and the second					
Flow Rate, v (veh/h)	2	13	3	40	1		26	
Capacity, c (veh/h)	53	275	41	216	191		132	
v/c Ratio	0.04	0.05	0.08	0.19	0.01		0.20	
95% Queue Length, Q95 (veh)	0.1	0.1	0.2	0.7	0.0		0.7	
95% Queue Length, Q ₉₅ (ft)	2.6	2.6	5,1	17.9	0.0		17.9	
Control Delay (s/veh)	76.2	18.8	101.2	25.5	23.9	0.2	38.7	
Level of Service (LOS)	F	С	F	D	С	Α	E	
Approach Delay (s/veh)	27.0		31	1.2	0).2	0	.6
Approach LOS	D)		A		4

	HCS Two-Way	Stop-Control Report	
General Information		Site Information	
Analyst	Nelson	Intersection	MD 355 - Middle Driveway
Agency/Co.		Jurisdiction	rockville
Date Performed	2/6/2024	East/West Street	Middle Drive
Analysis Year	2024	North/South Street	MD 355
Time Analyzed	pm peak +5ile 4mg	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	0	3	0	0	1	3	C
Configuration		LT		R		LT		R		LT	T	TR		L	Т	Т
Volume (veh/h)		2	0	12		5	0	50		1	1783	6	0	34	1464	3
Percent Heavy Vehicles (%)		3	3	3		3	3	3	-	3			3	3		
Proportion Time Blocked		0.000	0.000	0.000		0.000	0.000	0,000		0.000				0.000		
Percent Grade (%))				0									
Right Turn Channelized		N	lo			- 1	lo									
Median Type Storage				Left +	Thru								4			
Critical and Follow-up He	eadwa	ys					1									
Base Critical Headway (sec)		6.4	6.5	7.1		6.4	6.5	7.1		5.3				5.3		
Critical Headway (sec)		6.46	6.56	7.16		6.46	6.56	7.16		5.36				5.36		
Base Follow-Up Headway (sec)		3.8	4.0	3.9		3.8	4.0	3.9		3.1				3.1		
Follow-Up Headway (sec)		3.83	4.03	3.93		3.83	4.03	3.93		3.13				3.13		
Delay, Queue Length, and	Leve	of Se	ervice	1												
Flow Rate, v (veh/h)		2		13		5		54		1				37		Г
Capacity, c (veh/h)		46		275	- 10	40		215		191				132		
v/c Ratio		0.05		0.05		0.13		0.25		0.01				0.28		
95% Queue Length, Q ₉₅ (veh)		0.1		0.1		0.4		1.0		0.0				1.1		Г
95% Queue Length, Q ₉₅ (ft)		2.6		2.6		10.2		25.6		0.0				28.2		
Control Delay (s/veh)		87.9		18.8		107.2		27.3		23.9	0.2			42.6		
Level of Service (LOS)		F		С		F		D		С	Α			Е		
Approach Delay (s/veh)		28	.6			34	1.6		0.2 0.9							
Approach LOS		D				D A				A						

General and Site Information					Lanes								
Nelson				1		12.1	V 0.1						
1				1		ل	4 1	小小	<u> </u>				
3/1/20	3/1/2024							₩					
2024					ت					~			
0.25						THE RESERVE OF THE PERSONS ASSESSED.				*			
PM Pea					4					←			
900 MI	900 MD 355 Serivce Road Study				≺	4				>			
Serivce Rd Middle Drive				1	-					*			
Rockvil	Rockville									*			
			-	1	-					m K			
_				1		Villa I							
0.92	0.92					1	4 4	ΥT	F 1.				
nd Volun	nes			-							7.		
	Eastbour	ıd	I	Westboun	d	1	Northbou	nd	Southbound				
L	Т	R	L	T	R	L	Т	R	L	Т	R		
3	0	25				35	15	0	0	8	6		
								1					
tments		•		-				-					
Eastbound				Westboun	d	Northbound			Southbound				
L1	12	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3		
LTR						LTR			LTR				
30		T				54			15				
2						2			2		\top		
3.20				İ		3.20			3.20				
0.027						0.048			0.014				
3.57						4.15			3.79		T		
0.030		1				0.063			0.016		T		
2.0		1				2.0		1	2.0		1		
1.57						2.15			1,79		†		
of Service	В			-					-	-			
T T				Westbound	<u> </u>	1	lorthbour	nd	Southbound				
L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	I L3		
LTR						LTR			LTR		†		
30						54			15		 		
1009						868			950		 		
0.1						0.2			0.0		 		
2.5						5.1		 	0.0		1		
						-			-		-		
6.7		1				7.4			6.8				
6.7 A						7.4 A		-	6.8 A		-		
	Nelson 3/1/20 2024 0.25 PM Pea 900 MI Serivce Rockvii	Nelson	Nelson Signature	Nelson Salation Nelson	Nelson	Nelson	Nelson	Nelson	Nelson	Nelson			

		HC	S All-W	Vay Sto	ор Сог	ntrol F	Report				Haly		
General and Site Information					Lanes								
Analyst	Nelsor	Nelson											
Agency/Co.					1		لي	4 1	人本	<u> </u>			
Date Performed	3/1/20	3/1/2024							*				
Analysis Year	2024					ت					*_		
Analysis Time Period (hrs)	0.25				1	_2,	A CONTRACTOR OF THE PARTY OF TH				-Z-		
Time Analyzed	PM Pe	PM Peak Total				* ~					←		
Project Description	900 MI	900 MD 355 Serivce Road Study				~	†				-		
Intersection	Serivce	Serivce Rd MIddle Drive									*		
Jurisdiction	Rockvil	Rockville				_Z,					7		
East/West Street					1	3			4.		M K		
North/South Street					1		- ME	4 4	∳ Ƴ ↑ 1				
Peak Hour Factor	0.92						1	7 4	1 1	r 1			
Turning Movement Dema	nd Volun	nes			-							-	
Approach	T	Eastbour	nd	I	Westboun	d	Г	Northbou	nd	Southbound			
Movement	L	T	R	L	Т	R	L	Т	R	ī	T	R	
Volume (veh/h)	17	0	25				35	15	0	0	8	21	
% Thrus in Shared Lane			1						\vdash			1	
Lane Flow Rate and Adjus	tments	***************************************								-			
Approach		Eastbour	nd		Westboun	d		Northbound			Southbound		
Lane	L1	L2	L3	L1	L2	L3	Li	L2	L3	L1	L2	L3	
Configuration	LTR						LTR		†	LTR		†	
Flow Rate, v (veh/h)	46		1				54		1	32	 -	\vdash	
Percent Heavy Vehicles	2		1				2		1	2		\vdash	
Initial Departure Headway, ha (s)	3.20		†				3.20		†	3.20		\vdash	
Initial Degree of Utilization, x	0.041		1				0.048	<u> </u>	 	0.028		 	
Final Departure Headway, ha (s)	3.84						4.20			3.65		\vdash	
Final Degree of Utilization, x	0.049		1				0.063			0.032	-	 	
Move-Up Time, m (s)	2.0		1		i		2.0		—	2.0		<u> </u>	
Service Time, t. (s)	1.84						2.20			1.65		<u> </u>	
Capacity, Delay and Level	of Service	9	-										
Approach	T	Eastbound			Westbound		1	Northbour	ıd	Southbound			
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3	
Configuration	LTR						LTR			LTR			
Flow Rate, v (veh/h)	46						54		 	32		_	
Capacity (veh/h)	938						858			987		_	
95% Queue Length, Q ₉₅ (veh)	0.2						0.2			0,1			
95% Queue Length, Q ₉₅ (ft)	5.1						5.1			2.5		-	
Control Delay (s/veh)	7.0						7.5			6.8			
Level of Service, LOS	A		\vdash				7.5 A			A A			
Approach Delay (s/veh) LOS	7.0	1	A		-		7.5	-	Α	6,8			
ntersection Delay (s/veh) LOS	+		7.	2			7.3			A 6,8		A	